
1

1 Additional Implementation Details

1.1 NC-SDEdit Applied to VE-SDE

Song et al. [8] demonstrated that the noise perturbations used in DDPM [3] and
SMLD [7] correspond to discretizations of variance preserving (VP) and variance
exploding (VE) SDEs respectively.

Specifically, consider the following stochastic differential equation:

dx = f(x, t)dt+ ḡ(t)dw, (1)

where f : Rd 7→ Rd is the drift coefficient of x(t), ḡ : R 7→ R is the diffusion
coefficient coupled with the standard d-dimensional Wiener process w ∈ Rd. By
carefully choosing f̄ , ḡ, one can achieve spherical Gaussian distribution as t → T .

For the given forward SDE in Eq. (1), there exists a reversetime SDE running
backwards:

dx = [f(x, t)− ḡ(t)2 ∇x log pt(x)︸ ︷︷ ︸
score function

]dt+ ḡ(t)dw (2)

where dt is the infinitesimal negative time step, and w is the Brownian motion
running backwards.

First, by choosing

f(x, t) = −1

2
β(t)x, ḡ(t) =

√
β(t), (3)

where 0 < β(t) < 1 is a monotonically increasing function of noise scale, one
achieves the VP-SDE [3]. On the other hand, VE-SDE choose

f = 0, ḡ =

√
d [σ2(t)]

dt
, (4)

where σ(t) > 0 is again a monotonically increasing function, typically chosen to
be a geometric series [7].

VP-SDE can be seen as the continuous version of DDPM [3]. On the other
hand, SMLD [7] can be seen as the discrete version of VE-SDE. Specifically, the
forward SMLD diffusion step is given by:

xt = x0 + σtz (5)

where σt = σmin

(
σmax

σmin

) t−1
T−1

, as defined in [8] and z ∼ N (0, 1).

The diffusion process of SDXL-1.0-refiner [5] is constructed through the VE-
SDE. therefore, we incorporate the corresponding Noise Calibration algorithm
as shown in Algorithm 1.
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Algorithm 1 Noise Calibration (VE-SDE)
Input: reference xr, initial denoising step t0, diffusion model ϵθ(xt, t), iteration steps
N , stop frequency ν
ϵt0 ∼ N (0, 1)
for n = 1 to N do

xt0 = xr + σt0ϵt0
x̂t0
0 = xt0 − σt0ϵθ (xt0 , t0)

ϵt0 = ϵθ(xt0 , t0) + (fν
h (x̂

t0
0 )− fν

h (x
r))/σt0

end for

1.2 Details on Low-Frequency and High-Frequency Decomposition

To further mitigate the issue of oversmoothed texture, FreeU [6] employ spectral
modulation in the Fourier domain to selectively diminish low-frequency compo-
nents for the skip features. We employ the same method to extract the high-
frequency and low-frequency components of the reference reference xr and the
initial estimate x̂t0

0 . Taking the extraction of the low-frequency component as an
example, mathematically, this operation is performed as follows:

F (x) = FFT (x) ,

F ′ (x) = F (x)⊙ βν
l ,

fν
l (x) = IFFT (F ′ (x)) ,

(6)

where FFT(·) and IFFT(·) are Fourier transform and inverse Fourier transform.
⊙ denotes element-wise multiplication, and βν

l is a Fourier mask:

βν
l =

{
1 if r < ν,

0 otherwise,
(7)

where r is the radius. ν is the threshold frequency. If you want to extract the
high-frequency component, replace βν

l in Eq. (6) with:

βν
h =

{
0 if r < ν,

1 otherwise.
(8)

2 Additional Experimental Results

2.1 Performance Demonstration of NC-SDEdit with Different t0

Fig. 1 shows the enhancement effect of Noise Calibration on the original enhanced
results under different initial denoising step t0 conditions. Specifically, when only
using SDEdit for video enhancement, at a small initial denoising step t0, such
as 200 or 400, the enhanced video will have many temporal noise points. When
t0=600, although the noise points basically disappear, content changes begin to
appear, such as additional sail. When t0 continues to increase to 800, content
inconsistency continues to increase. However, our method only needs to iterate
the initial random noise three times to achieve a significant improvement in
content consistency, regardless of the value of t0.
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Fig. 1: Performance Demonstration of NC-SDEdit with Different t0
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Fig. 2: Display of Distribution Before and After Noise Calibration

2.2 Display of Distribution Before and After Noise Calibration

We randomly selected 4 videos and correspondingly generated 4 noises "Noise1"
from a standard normal distribution. As can be seen from Fig. 2, the noise
"Noise2" obtained by Noise Calibration in the initial random noise "Noise1"
still satisfies the standard normal distribution. We believe that when the ini-
tial denoising step t0 increases, although ||fν

l (x
r)− fν

l (x̂
t0
0 ))|| generally becomes

larger,
√

ᾱt0√
1−ᾱt0

becomes smaller. Moreover, during each iteration, the overall

value of
√

ᾱt0√
1−ᾱt0

(fν
l (x

r) − fν
l (x̂

t0
0 )) will not be very large. Therefore, the noise

"Noise2" after iterations is still not much different from "Noise1".

2.3 Demonstration of Enhancement Effects on Real Videos

Figs. 3 and 4 demonstrate that Noise Calibration can greatly maintain content
consistency before and after enhancement for real videos. However, to ensure the
effectiveness of the enhancement, it is necessary to employ alternative generative
models that are better at understanding and simulating the physical world in
motion, such as Sora [1].
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Reference SDEdit

NC-SDEdit GT

Fig. 3: Display of Real Video Enhancement on UDM10 [9] with VideoCrafter [2]

Reference SDEdit

NC-SDEdit GT

Fig. 4: Display of Real Video Enhancement on REDS4 [4] with MS-Vid2Vid-XL [10]

3 More Qualitative Results

We show more video enhancement results produced by our method based on
VideoCrafter in Figs. 5 and 6. Furthermore, the enhanced effects of Noise Cal-
ibration on existing state-of-the-art (SOTA) refinements can be seen in Figs. 7
and 8.
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A knight riding a horse in race course, Van Gogh oil painting style.

An elderly man leisurely strolls through the park with his dog.

A group of chatty crows gather on a power line, squawking loudly to one another.

Reference SDEdit NC-SDEdit

Fig. 5: Visual Comparisons of Video Enhancement based on VideoCrafter



6

Reference SDEdit NC-SDEdit

An ostrich, close-up shot, high detailed.

A jack-o-lantern on the table with some candles next to it.

The camera moves from left to right on the table.

Fig. 6: Visual Comparisons of Video Enhancement based on VideoCrafter
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A man playing a soccer ball in a football field.

A statue with the style of van gogh.

A pod of dolphins gracefully swim and jump in the ocean.

Reference MS-Vid2Vid-XL MS-Vid2Vid-XL+NC

Fig. 7: Visual Demonstration of MS-Vid2Vid-XL [10] with Noise Calibration

Reference SDXL-refiner SDXL-refiner+NC

A pod of dolphins gracefully swim and jump in the ocean.

A rectangular book with a hardcover and embossed title on the front.

Macro len style, A tiny mouse in a dainty dress holds a parasol to shield from the sun.

Fig. 8: Visual Demonstration of SDXL-1.0-refiner [5] with Noise Calibration
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